Low-Rank Spectral Learning
نویسندگان
چکیده
Spectral learning methods have recently been proposed as alternatives to slow, non-convex optimization algorithms like EM for a variety of probabilistic models in which hidden information must be inferred by the learner. These methods are typically controlled by a rank hyperparameter that sets the complexity of the model; when the model rank matches the true rank of the process generating the data, the resulting predictions are provably consistent and admit finite sample convergence bounds. However, in practice we usually do not know the true rank, and, in any event, from a computational and statistical standpoint it is likely to be prohibitively large. It is therefore of great practical interest to understand the behavior of low-rank spectral learning, where the model rank is less than the true rank. Counterintuitively, we show that even when the singular values omitted by lowering the rank are arbitrarily small, the resulting prediction errors can in fact be arbitrarily large. We identify two distinct possible causes for this bad behavior, and illustrate them with simple examples. We then show that these two causes are essentially complete: assuming that they do not occur, we can prove that the prediction error is bounded in terms of the magnitudes of the omitted singular values. We argue that the assumptions necessary for this result are relatively realistic, making low-rank spectral learning a viable option for many applications. Appearing in Proceedings of the 17 International Conference on Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copyright 2014 by the authors.
منابع مشابه
An Exploration of Low-Rank Spectral Learning
Spectral learning methods have recently been proposed for a variety of probabilistic models. These methods typically involve a rank hyperparameter that controls the complexity of the model; when it is set to match the true rank of the process generating the training data, the resulting estimate is provably consistent and admits finite sample convergence bounds. However, in practice we usually d...
متن کاملUnsupervised Spectral Learning of WCFG as Low-rank Matrix Completion
We derive a spectral method for unsupervised learning of Weighted Context Free Grammars. We frame WCFG induction as finding a Hankel matrix that has low rank and is linearly constrained to represent a function computed by inside-outside recursions. The proposed algorithm picks the grammar that agrees with a sample and is the simplest with respect to the nuclear norm of the Hankel matrix.
متن کاملLow-Rank Spectral Learning with Weighted Loss Functions
Kulesza et al. [2014] recently observed that low-rank spectral learning algorithms, which discard the smallest singular values of a moment matrix during training, can behave in unexpected ways, producing large errors even when the discarded singular values are arbitrarily small. In this paper we prove that when learning predictive state representations those problematic cases disappear if we in...
متن کاملLow-rank spectral optimization
Various applications in signal processing and machine learning give rise to highly structured spectral optimization problems characterized by low-rank solutions. Two important examples that motivate this work are optimization problems from phase retrieval and from blind deconvolution, which are designed to yield rank-1 solutions. An algorithm is described based on solving a certain constrained ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014